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Abstract. In recommendation systems, it has been an increasing em-
phasis on recommending potentially novel and interesting items in ad-
dition to currently confirmed attractive ones. In this paper, we propose
a contextual bandit algorithm for web page recommendation in the de-
pendent click model (DCM), which takes user and web page features
into consideration and automatically balances between exploration and
exploitation. In addition, unlike many previous contextual bandit algo-
rithms which assume that the click through rate is a linear function of
features, we enhance the representability by adopting the generalized lin-
ear models, which include both linear and logistic regressions and have
exhibited stronger performance in many binary-reward applications. We
prove an upper bound of Õ(d

√
n) on the regret of the proposed algorithm.

Experiments are conducted on both synthetic and real-world data, and
the results demonstrate significant advantages of our algorithm.

1 Introduction

Given a search query, a web page recommendation algorithm recommends a list
of related web pages based on a certain model of past user behavior and page
information [1]. An online learning algorithm for personalized recommender sys-
tems aims at learning user preferences and incorporating the user feedback at
each time step, while maintaining a high Click-Through Rate (CTR) over a
long period of time. Earlier recommendation algorithms mostly focus on recom-
mending the currently confirmed attractive items, and put less emphasis on the
potentially valuable items in the future, e.g., the Logistic Regression (LR) [2]
and the Factorizations Machines (FM) [3]. It was observed that such algorithms
usually lead to suboptimal recommendations in a long term [4]. Besides, though
accuracy is a typical target for recommendation, the diversity and the long-
term user satisfactory of a recommender system have shown more and more
importance [1]. Therefore, special attention should be paid to a balance between
exploiting immediate yet suboptimal rewards (exploitation) and exploring un-
certain but potentially interesting items which may produce large benefits later
(exploration).

Multi-armed bandit (MAB) is a general framework of sequential decision
problems, in which a balance between exploration and exploitation is needed [5].



In the basic stochastic setting, we have a number of arms each with an unknown
reward distribution. At each time step, we need to select one of them, receiving
the reward randomly drawn from the corresponding distribution. The goal is
to maximize the total reward over the time, or equivalently, to minimize the
regret, which is the difference between our cumulative reward and the reward of
always pulling the best arm. Numerous algorithms have been proposed for MAB
and they have been successfully applied in many scenarios, such as personalized
recommendation [6], clinical trials [7], etc.

The Cascade Model (CM) is a widely used click model in which the rec-
ommended web pages are listed in a sequence and the user examines the list
from top to bottom until she finds a satisfactory one [8]. This model is partic-
ularly suitable for characterizing the user browsing behavior on mobile devices.
A number of bandit algorithms were developed and have exhibited prominent
effectiveness in cascade model [9–11]. One limit of the model is its assumption
that the user clicks at most one of the recommended items, and a natural exten-
sion to allowing multiple clicks is the dependent click model (DCM), where the
user may click more than one items before finding a satisfactory one [12].

In the DCM bandit setting, at each time step t, the learning agent displays
an ordered list of K items out of L ground items to the user. The user examines
the items in the displayed order and clicks on the attracted items. After an item
is clicked, the user may either be satisfied and leave, or unsatisfied and proceed
to the next item. The user leaves if all K items have been examined, regardless
of whether the user has found any satisfactory item or not. If the user leaves with
satisfaction, then the learning agent receives a reward of 1; otherwise the reward
is 0. However, this reward is not observed by the learning agent, as the agent
cannot distinguish between the user leaving with satisfaction or leaving because
she has exhausted all items. All the feedback the learning agent receives is the
clicking pattern such as 0100110000, in which case the learning agent knows
that the user is attracted by the 2nd, 5th and 6th items, but not by the 1st, 3rd
and 4th items. However, whether the user is attracted by the rest (the 7th and
beyond) remains unknown to the learning agent.

In many modern personalized news/apps/ads recommendation systems, cer-
tain features of users are available through registration or historical behaviors,
which can be exploited to provide more accurate recommendations [1]. In the
bandit setting, these features are usually called the context, modeled as a d-
dimensional vector that contains information of users or items. In previous stud-
ies on contextual bandit in the cascade model, the attraction weight is assumed
to be the inner product of the vector of the contextual vector and a fixed but un-
known vector θ [11, 6, 13], i.e. a linear function of the contextual vector (thereby
the name linear bandit). However, the reward function in real-world applica-
tions can be complicated and hardly confined to being linear. With an increasing
amount of historical data, stronger models may be preferred for better repre-
sentability. Besides, logistic regression (LR) has exhibited empirical improve-
ments over the linear model in news recommendation [14]. In this paper, we



go beyond the linear reward model and consider the more general exponential
family distributions, which include LR as a special case.

Our work has four main contributions. First, we incorporate contextual in-
formation into DCM bandit model, and strengthen the linear model by including
exponential family distributions. Second, we present a computationally efficient
version of our algorithm which may be valuable for practical use. Third, we prove
an upper bound of Õ(d

√
n) on the regret. Fourth, experiments are conducted on

both synthetic and real world data, which demonstrate the substantial advan-
tage of our algorithm compared to the typical LR algorithm and the one without
utilizing contextual information.

2 Problem Formulation

In this paper, we consider the contextual DCM bandit problem with the gener-
alized linear payoff for list recommendation. Let n be the total number of time
steps. Suppose that we have a set E = {1, . . . , L} = [L] of ground items. At
each time step t, the learning agent receives a user query. Combining the user
query and each arm i gives a contextual vector xi,t ∈ R known to the learning
agent, whose action is to recommend an ordered list At = (at1, . . . ,a

t
K) of K

distinct items from E to the user. 3 We say that such an action has length K,
and denote by ΠK(E) the feasible action set of all ordered lists of K distinct
items from E. The user checks the list of items one by one from top to bottom.
For each item a, the user is attracted with probability w̄t(a) ∈ [0, 1], and we will
use wt(a) ∈ {0, 1} to denote the attraction weight, a Bernoulli random variable
with mean w̄t(a) indicating whether the user is attracted by a or not. Denote by
wt ∈ {0, 1}E the random vector of these indicators, and by Pw the distribution
of wt. We assume that the attraction vectors are independent across time steps
and items, namely {wt}nt=1 are i.i.d. drawn from a probability distribution Pw.

If the user is attracted by the k-th item ak in the recommended list, i.e.
wt(ak) = 1, then she clicks it and examines the item. The user may be satisfied
and leave, which happens with probability v̄t(k) and then the learning agent
receives a reward of 1. The user may also find the item unsatisfactory (which
happens with probability 1− v̄t(k), and then continues to check the next item.
If all items have been checked and the user has not found any satisfactory item,
then the user leaves and the learning agent receives reward 0. The termination
weight vt(k) ∈ {0, 1} is the Bernoulli random variable with mean v̄t(k). We
denote by vt ∈ {0, 1}K the random vector of the termination weights, by Pv its
distribution, and assume {vt}nt=1 to be i.i.d. drawn from Pv.

The above process defines a random {0, 1} reward, but note that this re-
ward is not revealed to the learning agent, as the user just leaves after checking
some items and does not report whether she finds the item she wants. Indeed,
the search engine does not even know when the user leaves. All the feedback
that the search engine receives is a sequence of k click indicators (w′1, . . . ,w

′
K).

3 Here and throughout the paper, we use bold letters for random variables.



Note that w′i may not be the same as wi as. For example, if the sequence is
0100110000, it may be the case that the user leaves at the sixth item with sat-
isfaction. Another case is that the user checks all items without finding anyone
satisfactory, but has to leave at the end. This feedback is too limited to ad-
mit any good learning algorithm. Therefore, we adopt the same assumption as
in [15] that the order π(v̄) of v̄ = (v̄(1), . . . , v̄(K)) is known to the agent, where
the order π is a permutation satisfying that v̄(π(1)) ≥ . . . ≥ v̄(π(K)). This as-
sumption is practically reasonable as in many cases, though we may not have a
precise estimation of each value v̄(k), we do know their relative comparison. (For
instance, for typical search engines it may well be the case that π is identity,
namely v̄t(1) ≥ ... ≥ v̄t(K).) Under this assumption, it can be easily shown that
the expected reward is maximized when the items are listed in the decreasing
order of their attractiveness.

To give a more formal treatment of the award, consider the reward function
f : Πk(E)× [0, 1]E × [0, 1]K → [0, 1] defined by

f(A, v, w) = 1−
K∏
k=1

(1− v(k)w(ak)), (1)

where A = (a1, . . . , aK). In this notation, the reward in time step t is rt =
f(At,vt,wt). Due to the assumed independence of all {vt} and {wt}, it is easily
seen that for any fixed action A, the expected reward is f(A, v̄t, w̄t).

The performance of the learning agent is evaluated by the pseudo-regret, the
difference of cumulative reward of the optimal actions and that of the actions of
the agent:

R(n) = E
[ n∑
t=1

(
f(A∗t , v̄t, w̄t)− f(At, v̄t, w̄t)

)]
, (2)

where
A∗t = argmaxA∈ΠK(E)f(A, v̄t, w̄t)

is the optimal list that maximizes the expected reward in step t.
We adopt the standard assumption that in contextual bandits that all contex-

tual vectors xt,a ∈ Rd are assumed to have bounded norm ‖xt,a‖2 ≤ 1. Besides,
we assume that the attraction weight wt(a) satisfies the generalized linear model
(GLM), a flexible extension of the ordinary linear model that previous cascading
bandit studies assumed. More precisely, assume that

w̄t(a) = E[wt(a)|Ht] = µ(θ>∗ xt,a), (3)

where {Ht}nt=1 represents the history containing clicks and features up to time
t, and θ∗ is a fixed but unknown vector θ∗ ∈ Rd. The inverse link function µ is
chosen such that 0 ≤ µ(θ>∗ xt,a) ≤ 1 for any a and t. This GLM admits a wider
range of nonlinear distributions such as Gaussian, binomial, Poisson, gamma
distributions, etc. In particular, when the feedback is binary or count variables,
the logistic or Poisson regression can be used. Especially in the present DCM
setting, the logistic regression fits the web page recommendation better than the
linear model [14].



3 Algorithm and Results

3.1 Algorithm

To maximize user satisfaction, two sets of parameters, w̄t and v̄t need to be esti-
mated. We assume that the order of the expected termination weight is known to
the agent, which in practice can be easily estimated using historical click data.
The problem then reduces to the estimation of the mean and variance of the
expected attraction weight. Due to the limited feedback, it is unclear whether
the user is attracted by the item of the last click position, which is denoted by
Ct ∈ {0, 1, . . . ,K}, where Ct = 0 means no item has been clicked. The algorithm
therefore simply uses the feedback before Ct for updates. As introduced before,
the random variable wt(a) satisfies Eq.(3) with the inverse link function µ as-
sumed to be twice continuously differentiable and strictly increasing. We further
assume that µ is a kµ-Lipschitz function (namely, the first order derivative of
µ is upper bounded by kµ), and that cµ := inf{‖x‖2≤1,‖θ−θ∗‖2≤1} µ

′(θ>x) > 0.
For logistic regression, µ(x) = 1/(1 + e−x) and it is easily verified that cµ =
0.1, kµ = 0.25 suffice for the requirements. Given the historical information

{(xs,a,ws(a
s
k)) : s ∈ [t], a ∈ E, k ∈ [Cs]}, where (xs,ws) ∈ Hs, the estimator θ̂t

can be efficiently obtained by solving the following equation:

t∑
s=1

Cs∑
k=1

(
ws(a

s
k)− µ(θ>xs,ask)

)
xs,ask = 0. (4)

For logistic regression, this step can be computed by Newton method. Next,
we design an upper confidence bound of the expected attraction weight. Define
Vt = λI+

∑t
s=1

∑Cs
k=1 xs,askx

>
s,ask

, we have the following fact by Lemma 3 in [16].

Lemma 1. For any δ ∈ [1/n, 1), with probability at least 1−δ, for all 1 ≤ t ≤ n,
we have

‖θ̂t − θ∗‖Vt
≤ σ

cµ

√
d

2
log(1 + t/(λd)) + log(1/δ). (5)

Here the l2-norm of x based on a positive definite matrix A is defined by ‖x‖A =√
x>Ax. Building on this, we can bound |µ(θ̂>t xt,a)−µ(θ>∗ xt,a)| by first applying

the definition of kµ-Lipschitz of function µ and then using the Cauchy-Schwartz
inequality.

|µ(θ̂>t xt,a)− µ(θ>∗ xt,a)| ≤ kµ|θ̂>t xt,a − θ>∗ xt,a| ≤ kµ‖θ̂t − θ∗‖Vt
‖xt,a‖V−1

t

≤ kµσ

cµ

√
d

2
log(1 + t/(λd)) + log(1/δ)‖xt,a‖V−1

t

Let ρ(t) =
kµσ
cµ

√
d
2 log(1 + t/(λd)) + log(1/δ), and define the upper confi-

dence bound of the expected attraction weight for item a at time t by

Ut(a) = min{µ(θ̂>t−1xt,a) + ρ(t− 1)‖xt,a‖V−1
t−1
, 1}, (6)



where the first term of Ut(a) is for exploitation and the second term for ex-
ploration. Choosing an item with the maximum Ut(a) balances the exploration
and exploitation. Based on the above discussion, we propose an algorithm given
in box Algorithm 1. Firstly, for each item in the ground item set, an upper
confidence bound Ut ∈ [0, 1]E for the expected attraction weight is calculated.
Then the agent uses any ṽt that has the same order as v̄t, gets a maximizer
At = argmaxA∈ΠK(E)f(A, ṽt,Ut), and recommends the list. After user exam-

ines the list, the agent observes the last click position Ct, and wt(a
t
k), k ∈ [Ct]

(Here we adopt the notation that [0] = ∅). The estimator θ̂t of θ∗ is then updated
based on new feedback. Finally, the related statistics are updated for the next
time step.

Algorithm 1 Contextual DCM Bandits with Generalized Linear Payoff (GL-
CDCM)

1: Parameters : δ = 1√
n

; λ ≥ K
2: Initialization : θ̂0 = 0, ρ(0) = 1, V0 = λI
3: for t = 1 to n do
4: Obtain context xt,a for all a ∈ E
5: ∀a ∈ E, compute

Ut(a) = min{µ(θ̂>t−1xt,a) + ρ(t− 1)‖xt,a‖V−1
t−1

,1}
6: At ← argmaxA∈ΠK(E)f(A, ṽt,Ut)

7: Play At and observe Ct, wt(a
t
k), k ∈ [Ct]

8: Solve θ̂t from∑t
s=1

∑Cs
k=1(ws(a

s
k)− µ(θ>t xs,ask ))xs,as

k
= 0

9: Vt ← Vt−1 +
∑Ct
k=1 xt,atk

x>t,at
k

10: end for

3.2 Results

The result on the upper bound on the regret for the proposed contextual DCM
bandits is presented in this section. Denote pv = max1≤t≤n maxi=1,...,K(v̄t(i) −
v̄t(i + 1)) by the maximal difference of expected termination weights between
two consecutive positions over all time. The main theorem on the regret is stated
as follows.

Theorem 1. For n ≥ 1, and the reward function f(A, v, w) = 1 −∏K
k=1(1 −

v(k)w(ak)), the pseudo-regret R(n) of Algorithm 1 has the following bound

R(n) ≤ 4dKpvkµσ

cµ

√
nK log

(
1 + n/(λd)

δ

)
log(1 +Kn/(λd)). (7)

The theorem shows a Õ(d
√
n) pseudo-regret bound, which is independent of

L, and improves the previous regret bound of [17] by a
√

log(n) term, though



our result is under the combinatorial setting. With an additional assumption on
item generating process, the result may be further improved by a

√
d-order while

sacrificing an increase on order of log(n) by using Theorem 1 of [16].

Proof. To begin with, we bound the one-step regret at time t, denoted by Rt =
f(A∗t ,vt,wt)− f(At,vt,wt), then

E[Rt|Ht] = f(A∗t , v̄t, w̄t)− f(At, v̄t, w̄t)

≤
K∑
k=1

v̄t(k)w̄t(a
∗
k)−

K∑
k=1

v̄t(k)w̄t(a
t
k) (8)

=

K∑
i=1

(v̄t(i)− v̄t(i+ 1))

i∑
k=1

(w̄t(a
∗
k)− w̄t(atk))

≤ pv
K∑
i=1

i∑
k=1

(w̄t(a
∗
k)− w̄t(atk)), (9)

where v̄t(i+ 1) = 0. The inequality (8) is because of the definition of A∗t and f ,
while (9) is by definition of the pv. We can observe that the problem has reduced

to the cascading problem of bounding
∑i
k=1(w̄t(a

∗
k)− w̄t(atk), which is equal to∑i

k=1 µ(θ>∗ xt,a∗k) − µ(θ>∗ xt,atk). We need the following Lemma 2 to bound this
cascade difference.

Lemma 2. Let t ≥ 1 and At = (at1, ...,a
t
i), i ∈ [K], we have:

i∑
k=1

(µ(θ>∗ xt,a∗k)− µ(θ>∗ xt,atk)) ≤ 2

i∑
k=1

ρ(t− 1)‖xt,atk‖V−1
t−1
.

Proof. Let A∗t = (a∗1, . . . , a
∗
K). By the definition of At, which is set of items with

the largest UCBs placed to the most terminating position, we have
∑i
k=1 Ut(a

∗
k) ≤∑i

k=1 Ut(a
t
k), i = [K], that is,∑i

k=1 µ(θ̂>xt,a∗k) + ρ(t− 1)‖xt,a∗k‖V−1
t−1

≤∑i
k=1 µ(θ̂>xt,atk) + ρ(t− 1)‖xt,atk‖V−1

t−1
. (10)

Then

i∑
k=1

µ(θ>∗ xt,a∗k)− µ(θ>∗ xt,atk)

=

i∑
k=1

µ(θ>∗ xt,a∗k)− µ(θ̂>xt,a∗k) + µ(θ̂>xt,a∗k)− µ(θ̂>xt,atk) +

µ(θ̂>xt,atk)− µ(θ>∗ xt,atk)

≤ ρ(t− 1)

i∑
k=1

‖xt,a∗k‖V−1
t−1

+
(
‖xt,atk‖V−1

t−1
− ‖xt,a∗k‖V−1

t−1

)
+ ‖xt,atk‖V−1

t−1
(11)



= 2ρ(t− 1)

i∑
k=1

‖xt,atk‖V−1
t−1
,

where Eq.(11) is obtained by applying (10). Our next step is to bound
∑t
s=1

∑i
k=1

∥∥xs,ask∥∥2V −1
t

by Lemma 4.4 in [11], when λ ≥ K,

Lemma 3. If λ ≥ K, then

t∑
s=1

i∑
k=1

∥∥xs,ask∥∥2V −1
t

≤ 2d log(1 +
Kt

λd
).

Building upon the previous discussion, we have:

R(n) =

n∑
t=1

E[E[Rt|Ht]]

≤ pv
n∑
t=1

E

[
K∑
i=1

i∑
k=1

(w̄t(a
∗
k)− w̄t(atk))

]
(12)

≤ pv
n∑
t=1

E

[
K∑
i=1

i∑
k=1

2ρ(t− 1)
∥∥∥xt,atk∥∥∥V−1

t

]

≤ 2ρ(n)pv

n∑
t=1

E

[
K∑
i=1

i∑
k=1

∥∥∥xt,atk∥∥∥V−1
t

]
. (13)

where Eq. (12) is due to the tower rule and the inequality (13) holds since ρ(t)
increases with t. Applying the Cauchy-Schwarz inequality on the current result,
we can derive that:

R(n) ≤ 2ρ(n)pvE

[√(
n
∑K
i=1

∑i
k=1 12

)(∑n
t=1

∑K
i=1

∑i
k=1

∥∥∥xt,atk∥∥∥2V−1
t

)]
.

Substituting ρ(n) back and applying Lemma 3 back yields our claimed result.

3.3 Computationally Efficient Updates

Though our proposed GL-CDCM enjoys good theoretical properties, the com-
putational cost may be high in some applications. The inverse of a d× d matrix
is computed at each time step while the MLE is calculated using samples up
to the current time step, which is increased linearly over time. We provide an
iterative optimization solution for GL-CDCM for the logistic regression where
µ(x) = 1/(1 + exp(−x)), denoted by GL-CDCM (SGD).

Instead of solving Eq.(4), we use the stochastic logistic gradient at time t

gt =

Ct∑
k=1

(
µ(θ̂>t xt,atk)−wt(a

t
k)
)
xt,atk , (14)



and we can update on θ̂t by

θ̂t = θ̂t−1 − ηgt, (15)

where η is the learning rate.
Let Ct ∈ RCt×d be the matrix whose rows are the feature vectors of the

observed items at time t. Then Vt = Vt−1 + C>t Ct. Let Gt = I + CtV
−1
t C>t ,

based on the Woodbury matrix identity [18], V−1t can be calculated efficiently
using

V−1t = V−1t−1 −V−1t−1C
>
t G−1t CtV

−1
t−1, (16)

in time O(Kd2).
Therefore, the burden of computing the inverse of a d×d matrix of is reduced

to computing the inverse of a square matrix of dimension at most K, which is
always smaller than d and can be much smaller in practice.

4 Experiments

4.1 Synthetic Data

In this section, we compare our algorithms (GL-CDCM) with the dcmKL-UCB
algorithm proposed in [15] (denoted as KL-DCM in our comparisons) and the
logistic regression (LR) on the synthetic data. Here LR means for each time
step t, it conducts logistic regression on all historical data and uses the obtained
parameters to choose the current items, which corresponds to selecting arms
by values of µ(θ̂>t−1xt,a), instead of Ut(a) (which has an additional exploration
term) in Line 5-6 for our Algorithm 1.

We simulate a scenario of web search as follows. First, we randomly select
the model parameter θ∗. Then at each time step t, randomly select contextual
vectors xt,a for each item a and expected termination weights v̄t. Then according
to Eq.(3), the expected attraction weight w̄t is computed by the given θ∗. Both
attraction weights wt and termination weights vt are then drawn from Bernoulli
distribution with the respective mean. The sigmoid function µ(x) = 1/(1 +
exp(−x)) serves as the inverse link function. The evaluation criterion is the
cumulative pseudo-regret defined in Eq.(2).

The curves of the cumulative regrets for these algorithms, i.e. GL-CDCM,
GL-CDCM (SGD), LR, LR (SGD) and KL-DCM, under n = 104 are shown in
Figure 1(a). To further demonstrate the estimation ability of GL-CDCM and

LR, the cosine distances between θ̂t and θ∗, i.e., 1 − θ̂>t θ∗

‖θ̂t‖2‖θ∗‖2
, are calculated

and shown in Figure 1(b), where the value 0 indicates that the learning agent
correctly estimates θ∗. We do not show KL-DCM in Figure 1(b) since it does not
estimate the parameter θ∗. As depicted in Figure 1(a), KL-DCM has the largest
regret since it ignores the contextual information. For both GL-CDCM and LR,
the SGD version generally has higher regret, which is a price to pay for efficiency.
Compared to the LR algorithm, the bandit algorithm balances the exploitation
and exploration and therefore has a better performance. Furthermore, the error
curve shows that the GL-CDCM converges more quickly than LR.
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Fig. 1. Experimental results of different recommendation algorithms on synthetic data.

4.2 Web Page Recommendation

In this section, we test our algorithms on the Yandex Personalized Web Search
dataset [19], which contains 35 million search sessions. Let M be the number of
users and L be the number of web pages. We use top 3 most frequent queries
for evaluation. Each query corresponds to one DCM which is estimated using
PyClick library [8]. In all the algorithms, we assume that the higher positions
have higher expected termination weight. In order to derive the feature vectors
for web pages, we first construct a sparse matrix A ∈ ZM×L where A(i, j) ∈ Z
denotes the number that user i clicked on web page j. Then the feature vector
is obtained through the SVD decomposition of A, i.e. A = USV >. We use V =
[v1; . . . ; vL] ∈ RL×d as the contextual information for the L web pages. We set
d = 200, K = 10, and L = 100. The cumulative pseudo-regret over 5000 rounds
for our proposed GL-CDCM, GL-CDCM (SGD), LR, LR (SGD) and KL-DCM
are shown in Figure 2. To incorporate the user features, we concatenate user
and item features as the contextual information. Let U = [u1; . . . ;uM ] ∈ RM×d,
then xi,j = [ui, vj ] ∈ R2d for user i and web page j. The features derived from
outer product where xi,j = ui ⊗ vj are also tested, but the performance is not
as good as xi,j = [ui, vj ]. At each time step, a user is randomly selected. Follow
the previous setting of the parameters, the results are displayed in Figure 2(b).

For the setting that only the item features are used, after 5000 rounds, the
proposed GL-CDCM obtains a regret of 32.28, which is much lower than 59.08
for LR and 99.09 for KL-DCM. Furthermore, the curve for KL-CDCM forms
a stair-step pattern since the ground item set is changing and the algorithm
needs to learn from the cold start from time to time. In contrast, GL-CDCM
and LR make use of the contextual information, and therefore achieve a better
estimation. Compared with LR, which is always exploiting, GL-CDCM explores
more and achieves a lower cumulative pseudo-regret. The SGD versions generally
have a higher regret for both GL-CDCM and LR, 81.71 for GL-CDCM (SGD)
and 114.96 for LR (SGD), but the time complexity reduces significantly. In
addition, the proposed GL-CDCM (SGD) still outperforms LR (SGD) because
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Fig. 2. Experimental results of different recommendation algorithms on Yandex
dataset.

of exploration. A similar pattern is also observed in the setting of involving
both user and item features, where more useful information are provided and
the regrets of GL-CDCM and LR decrease to 28.51 and 46.00, respectively. The
experimental results are consistent with our previous discussions and show that
our proposed algorithm has better performance even for practical problems,
where the assumptions might be violated.

5 Conclusion

In this paper, we present a bandit algorithm (and SGD variant) for web page
recommendation that automatically balances the exploration and exploitation.
We formulate the problem of DCM bandits with contextual information. The
dependent click model (DCM) covers the scenario of multiple clicks and is a
popular click model in web search. The contextual information is incorporated
in our work to better estimate the expected attraction weight. Under a reason-
able assumption on knowing the order of the expected termination weight, we
prove a regret bound of Õ(d

√
n) for the algorithm. A computationally efficient

version is also given by removing the expensive step of computing the MLE on
a linearly increasing sample set, and reducing the cost of inverting a d× d ma-
trix. Experimental results confirm the value of exploring, utilizing the contextual
information and adopting a generalized linear model.
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